Affiliation: | (1) Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju, 561-756, Korea;(2) National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba Ibaraki, 305-8566, Japan |
Abstract: | The substrate specificity of -chymotrypsin and other serine proteases, trypsin, elastase, proteinase K and subtilisin, towards hydrolysis of various polyesters was examined using poly(L-lactide) (PLA), poly(-hydroxybutyrate) (PHB), poly(ethylene succinate) (PES), poly(ethylene adipate) (PEA), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBS/A), poly[oligo(tetramethylene succinate)-co-(tetramethylane carbonate)] (PBS/C), and poly(-caprolactone) (PCL). -Chymotrypsin could degrade PLA and PEA with a lower activity on PBS/A. Proteinase K and subtilisin degraded almost all substrates other than PHB. Trypsin and elastase had similar substrate specificities to -chymotrypsin. |