首页 | 本学科首页   官方微博 | 高级检索  
     


On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata
Authors:M Sugumaran  S J Saul  H Dali
Affiliation:Department of Biology, University of Massachusetts, Boston 02125.
Abstract:The metabolism of N-beta-alanyldopamine (NBAD) by Sarcophaga bullata was investigated. Incubation of NBAD with larval cuticular preparations resulted in the covalent bindings of NBAD to the cuticle and generation of N-beta-alanyl-norepinephrine (NBANE) as the soluble product. When the reaction was carried out in presence of a powerful quinone trap viz., N-acetylcysteine, NBANE formation was totally abolished; but a new compound characterized as NBAD-quinone-N-acetylcysteine adduct was generated. These results indicate that NBAD quinone is an obligatory intermediate for the biosynthesis of NBANE in sarcophagid cuticle. Accordingly, phenylthiourea--a well-known phenoloxidase inhibitor--completely inhibited the NBANE production even at 5 microM level. A soluble enzyme isolated from cuticle converted exogenously supplied NBAD quinone to NBANE. Chemical considerations indicated that the enzyme is an isomerase and is converting NBAD quinone to its quinone methide which was rapidly and nonenzymatically hydrated to form NBANE. Consistent with this hypothesis is the finding that NBAD quinone methide can be trapped as beta-methoxy NBAD by performing the enzymatic reaction in 10% methanol. Moreover, when the reaction was carried out in presence of kynurenine, two diastereoisomeric structures of papiliochrome II-(Nar-[alpha-3-aminopropionyl amino methyl-3,4-dihydroxybenzyl]-L-kynurenine) could be isolated as by-products, indicating that the further reactions of NBAD quinone methide with exogenously added nucleophiles are nonenzymatic and nonstereoselective. Based on these results, it is concluded that NBAD is metabolized via NBAD quinone and NBAD quinone methide by the action of phenoloxidase and quinone isomerase respectively. The resultant NBAD quinone methide, being highly reactive, undergoes nonenzymatic and nonstereoselective Michael-1,6-addition reaction with either water (to form NBANE) or other nucleophiles in cuticle to account for the proposed quinone methide sclerotization.
Keywords:quinone methide sclerotization  quinone tanning  β-sclerotization  catecholamine oxidation  papiliochrome biosynthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号