首页 | 本学科首页   官方微博 | 高级检索  
     


Pressure-flow relationships of endotracheal tubes during high-frequency ventilation
Authors:Gavriely, N.   Solway, J.   Loring, S. H.   Butler, J. P.   Slutsky, A. S.   Drazen, J. M.
Abstract:We studied the pressure-flow relationships of various endotracheal tubes (ETT) at frequencies (f) and tidal volumes (VT) in the range used for high-frequency ventilation (HFV) (f: 2-32 Hz, VT: 15-100 ml). Sinusoidal flows were applied to ETT inserted into a rigid bottle or into the tracheae of three anesthetized paralyzed dogs, while pressure fluctuations were measured both proximal and distal to the ETT. The pressure drops in the ETT were nonlinearly related to the peak flow rate and were VT dependent, suggesting that turbulent frictional head loss and convective acceleration were important. The pressure drops measured in vitro were found to be in good agreement with the predictions of a nonlinear oscillatory pressure-flow equation (derived herein), which incorporate the effects of turbulent frictional losses, convective acceleration, inertance, and compliance. The pressure drops measured in situ were 30-50% higher than with the corresponding f-VT combinations in vitro. Possible explanations of these differences are junctional losses at the tip of the ETT or the nonrigid character of the trachea.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号