首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural basis for ion conduction and gating in ClC chloride channels
Authors:Dutzler Raimund
Institution:Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland. dutzler@bioc.unizh.ch
Abstract:Members of the ClC family of voltage-gated chloride channels are found from bacteria to mammals with a considerable degree of conservation in the membrane-inserted, pore-forming region. The crystal structures of the ClC channels of Escherichia coli and Salmonella typhimurium provide a structural framework for the entire family. The ClC channels are homodimeric proteins with an overall rhombus-like shape. Each ClC dimer has two pores each contained within a single subunit. The ClC subunit consists of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a chloride selectivity filter within the 15-A neck of a hourglass-shaped pore. Three Cl(-) binding sites within the selectivity filter stabilize ions by interactions with alpha-helix dipoles and by chemical interactions with nitrogen atoms and hydroxyl groups of residues in the protein. The Cl(-) binding site nearest the extracellular solution can be occupied either by a Cl(-) ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl(-) ion.
Keywords:Chloride channel  Chloride selectivity  Gating
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号