首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo upregulation of nitric oxide synthases in healthy rats
Authors:Heng Wu  Ying Jin  Jaqueline Arias  Jorge Bassuk  Arkady Uryash  Paul Kurlansky  Keith Webster  Jose A. Adams
Affiliation:1. Divisions of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;2. Vascular Biology Institute, University of Miami, Miami, FL 33136, USA;3. Florida Heart Research Institute, Miami, FL 33137, USA
Abstract:Periodic acceleration (pGz), sinusoidal motion of the whole body in a head–foot direction in the spinal axis, is a novel noninvasive means for cardiopulmonary support and induction of pulsatile shear stress. pGz increases plasma nitrite levels, in vivo and in vitro. Additionally, pGz confers cardioprotection in models of ischemia reperfusion injury. We hypothesize that pGz may also confer a cardiac phenotypic change by upregulation of the expression of the various NO synthase (NOS) isoforms in vivo. pGz was applied for 1 h to awake restrained male rats at 2 frequencies (360 and 600 cpm) and acceleration (Gz) of ±3.4 m/s2. pGz did not affect arterial blood gases or electrolytes. pGz significantly increased total nitrosylated protein levels, indicating increased NO production. pGz also increased mRNA and protein levels of eNOS and nNOS, and phosphorylated eNOS in heart. pGz increased Akt phosphorylation (p-AKT), but not total Akt, or phosphorylated ERK1/2. Inducible (i) NOS levels were undetectable with or without pGz. Immunoblotting revealed the localization of nNOS, exclusively in cardiomyocyte, and pGz increased its expression. We have demonstrated that pGz changes myocardial NOS phenotypes. Such upregulation of eNOS and nNOS was still evident 24 h after pGz. Further studies are needed to understand the biochemical and biomechanical signal transduction pathway for the observed NOS phenotype changed induced by pGz.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号