首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiscale patterns of movement in fragmented landscapes and consequences on demography of the snail kite in Florida
Authors:Martin Julien  Nichols James D  Kitchens Wiley M  Hines James E
Institution:Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611-0485, USA;and USGS Biological Resources Division, Patuxent Wildlife Research Center, Laurel, MD 20708, USA
Abstract:1. Habitat loss and fragmentation are major factors affecting vertebrate populations. A major effect of these habitat alterations is that they reduce movement of organisms. Despite the accepted importance of movement in driving the dynamics of many natural populations, movement of vertebrates in fragmented landscapes have seldom been estimated with robust statistical methods. 2. We estimated movement probabilities of snail kites Rosthramus sociabilis within the remaining wetlands in Florida. Using both radio-telemetry and banding information, we used a multistate modelling approach to estimate transition probabilities at two temporal scales (month; year) and multiple spatial scales. We examined kite movement among wetlands altered by three different levels of fragmentation: among wetlands separated by small physical barriers (e.g. road); among wetlands separated by moderate amount of matrix (< 5 km); and among wetlands separated by extensive matrix areas (> 15 km). 3. Kites moved extensively among contiguous wetlands (movement probability 0.29 per month), but significantly less among isolated wetlands (movement probability 0.10 per month). 4. Kites showed high levels of annual site fidelity to most isolated wetlands (probability ranged from 0.72 to 0.95 per year). 5. We tested the effects of patch size and interpatch distance on movement. Our modelling indicated an effect of both distance and patch size on juveniles' movement (but not adult) when examining movements among fragments. 6. Only a small proportion of kites escaped a regional drought by moving to refugia (wetlands less affected by drought). Many individuals died after the drought. During drought adult survival dropped by 16% while juvenile survival dropped by 86% (possibly because juveniles were less likely to reach refugia). 7. We hypothesize that fragmentation may decrease kite's resistance to drought by restricting exploratory behaviour.
Keywords:capture–recapture models  radio-telemetry  spatially structured population  survival
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号