Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation |
| |
Authors: | C A Carlson K H Kim |
| |
Affiliation: | Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 U.S.A. |
| |
Abstract: | Acetyl CoA carboxylase, in a partially purified preparation, was inactivated by ATP in a time- and temperature-dependent reaction. Adenosine 3′,5′-monophosphate did not affect the inactivation. Further purification separated the carboxylase from a protein fraction which could greatly enhance the inactivation of the enzyme.Inactivation of the enzyme with [γ-32P]ATP resulted in the incorporation of 32P which copurified with the enzyme. No label was incorporated when [U-14C]ATP was used. When carboxylase inactivated by exposure to [γ-32P]ATP was precipitated with antibody, isotope incorporation into the precipitate paralleled enzyme inactivation. The phosphate was bound to serine and threonine residues by an ester linkage.Sodium fluoride completely inhibited the activation of partially purified enzyme by magnesium ions. Activation by magnesium, accompanied by the release of protein-bound 32P, was antagonistic to inactivation of the enzyme by ATP.The data presented in this communication are consistent with a mechanism for controlling acetyl CoA carboxylase activity by interconversion between phosphorylated and dephosphorylated forms. Phosphorylation of the enzyme by a portein kinase decreases enzyme activity, whereas dephosphorylation by a protein phosphatase reactivates the enzyme. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|