首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases.
Authors:B Xia  A Vlamis-Gardikas  A Holmgren  P E Wright  H J Dyson
Institution:Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Abstract:Glutaredoxin 2 (Grx2) from Escherichia coli is distinguished from other glutaredoxins by its larger size, low overall sequence identity and lack of electron donor activity with ribonucleotide reductase. However, catalysis of glutathione (GSH)-dependent general disulfide reduction by Grx2 is extremely efficient. The high-resolution solution structure of E. coli Grx2 shows a two-domain protein, with residues 1 to 72 forming a classical "thioredoxin-fold" glutaredoxin domain, connected by an 11 residue linker to the highly helical C-terminal domain, residues 84 to 215. The active site, Cys9-Pro10-Tyr11-Cys12, is buried in the interface between the two domains, but Cys9 is solvent-accessible, consistent with its role in catalysis. The structures reveal the hither to unknown fact that Grx2 is structurally similar to glutathione-S-transferases (GST), although there is no obvious sequence homology. The similarity of these structures gives important insights into the functional significance of a new class of mammalian GST-like proteins, the single-cysteine omega class, which have glutaredoxin oxidoreductase activity rather than GSH-S-transferase conjugating activity. E. coli Grx 2 is structurally and functionally a member of this new expanding family of large glutaredoxins. The primary function of Grx2 as a GST-like glutaredoxin is to catalyze reversible glutathionylation of proteins with GSH in cellular redox regulation including stress responses.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号