首页 | 本学科首页   官方微博 | 高级检索  
     


Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea
Authors:Lee Sook-Young  Kim Jae-Sung  Kim Ji-Eun  Sapkota Kumar  Shen Ming-Hua  Kim Seung  Chun Hong-Sung  Yoo Jin-Cheol  Choi Han-Suk  Kim Myung-Kon  Kim Sung-Jun
Affiliation:Department of Biology Research Center for Industrial Accelerators, Dongshin University, 252 Daeho-dong, Naju 520-714, Republic of Korea.
Abstract:A fibrinolytic enzyme was purified from the cultured mycelia of Armillaria mellea by ion-exchange chromatography followed by gel filtration, and was designated A. mellea metalloprotease (AMMP). The purification protocol resulted in a 627-fold purification of the enzyme, with a final yield of 6.05%. The apparent molecular mass of the purified enzyme was estimated to be 21kDa by SDS-PAGE, fibrin-zymography and gel filtration chromatography, which revealed a monomeric form of the enzyme. The optimal reaction pH value and temperature were, pH 6.0, and 33 degrees C, respectively. This protease effectively hydrolyzed fibrinogen, preferentially digesting the Aalpha-chain over the Bbeta- and r-chains. Enzyme activity was inhibited by Cu(2+) and Co(2+), but enhanced by the addition of Ca(2+) and Mg(2+) ions. Furthermore, AMMP activity was potently inhibited by EDTA, and was found to exhibit a higher specificity for the substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 24 amino acid residues of the N-terminal sequence were MFSLSSRFFLYTLCL SAVAVSAAP, which is extremely similar to the 24 amino acid residues of the N-terminal sequence of the fruiting body of A. mellea. These data suggest that the fibrinolytic enzyme AMMP, obtained from the A. mellea exhibits a profound fibrinolytic activity. The mycelia of A. mellea may thus represent a potential source of new therapeutic agents to treat thrombosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号