首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels
Authors:Shibata Riichi  Misonou Hiroaki  Campomanes Claire R  Anderson Anne E  Schrader Laura A  Doliveira Lisa C  Carroll Karen I  Sweatt J David  Rhodes Kenneth J  Trimmer James S
Institution:Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794, USA.
Abstract:Kv4 potassium channels regulate action potentials in neurons and cardiac myocytes. Co-expression of EF hand-containing Ca2+-binding proteins termed KChIPs with pore-forming Kv4 alpha subunits causes changes in the gating and amplitude of Kv4 currents (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). Here we show that KChIPs profoundly affect the intracellular trafficking and molecular properties of Kv4.2 alpha subunits. Co-expression of KChIPs1-3 causes a dramatic redistribution of Kv4.2, releasing intrinsic endoplasmic reticulum retention and allowing for trafficking to the cell surface. KChIP co-expression also causes fundamental changes in Kv4.2 steady-state expression levels, phosphorylation, detergent solubility, and stability that reconstitute the molecular properties of Kv4.2 in native cells. Interestingly, the KChIP4a isoform, which exhibits unique effects on Kv4 channel gating, does not exert these effects on Kv4.2 and negatively influences the impact of other KChIPs. We provide evidence that these KChIP effects occur through the masking of an N-terminal Kv4.2 hydrophobic domain. These studies point to an essential role for KChIPs in determining both the biophysical and molecular characteristics of Kv4 channels and provide a molecular basis for the dramatic phenotype of KChIP knockout mice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号