首页 | 本学科首页   官方微博 | 高级检索  
     


Activation of 17beta-hydroxysteroid dehydrogenase from human red blood cells
Authors:G M Jacobsohn  J J O'Rangers
Affiliation:Department of Biological Chemistry, Hahnemann Medical College, Philadelphia, Pennsylvania 19102 USA
Abstract:Experiments designed to elucidate the nature of 17β-hydroxysteroid dehydrogenase from human red blood cells have shown that NADP+ activates and protects the enzyme, while also serving as substrate for the reaction. Enzyme activity was measured by the conversion of 17β-estradiol to estrone and by the production of NADPH with 17β-estradiol-3-sulfate as substrate. It appears that the reaction sequence is first, binding with NADP+ and second, binding with the steroid. The binding with NADP+ is essentially irreversible: the activated enzyme is completely protected against loss of activity by dilution. On dilution of the unactivated enzyme, much of the activity is lost. The bireactant rate equation of the sequential type has been restated for the case of activation by one of the reactants. Since it has been found that activation of enzyme is linear with NADP+ concentration, it follows that the Michaelis constant for the steroid substrate is independent of the concentration of NADP+ activating the enzyme. This is substantiated by the determination of the Michaelis constant for 17β-estradiol-3-sulfate from data on double-reciprocal plots of activated and unactivated enzyme with limiting amounts of steroid. The activating effect increases linearly up to a concentration of 1.2 × 10?5m of NADP+ and then levels off. The activation is highly specific for NADP+; neither NAD+, ATP, NADPH, nicotinic acid, ncr nicotinamide prevent the loss of activity after storing the enzyme for 1 hr at 37 °C. The steroid substrate appears to interfere with the activation of NADP+.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号