首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of codon message on xylanase thermal activity
Authors:Liu Liangwei  Wang Linmin  Zhang Zhang  Wang Suya  Chen Hongge
Affiliation:From the Life Science College, Henan Agricultural University, Zhengzhou 450002.
Abstract:Because the genetic codon is known for degeneracy, its effect on enzyme thermal property is seldom investigated. A dataset was constructed for GH10 xylanase coding sequences and optimal temperatures for activity (T(opt)). Codon contents and relative synonymous codon usages were calculated and respectively correlated with the enzyme T(opt) values, which were used to describe the xylanase thermophilic tendencies without dividing them into two thermophilic and mesophilic groups. After analyses of codon content and relative synonymous codon usages were checked by the Bonferroni correction, we found five codons, with three (AUA, AGA, and AGG) correlating positively and two (CGU and AGC) correlating negatively with the T(opt) value. The three positive codons are purine-rich codons, and the two negative codons have A-ends. The two negative codons are pyridine-rich codons, and one has a C-end. Comparable with the codon C- and A-ending features, C- and A-content within mRNA correlated negatively and positively with the T(opt) value, respectively. Thereby, codons have effects on enzyme thermal property. When the issue is analyzed at the residual level, the effect of codon message is lost. The codons relating to enzyme thermal property are selected by thermophilic force at nucleotide level.
Keywords:Amino Acid   Biophysics   Computational Biology   Enzyme Mechanisms   Enzyme Structure   Enzymes   Affect   Codon
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号