首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Affinity purification and catalytic properties of a soluble, Ca2+-independent, diacylglycerol kinase
Authors:Thomas W E  Glomset J A
Institution:Howard Hughes Medical Institute, Department of Medicine, Regional Primate Research Center, University of Washington, Seattle 98195-7370, USA.
Abstract:We used a new procedure that involved selective enzyme binding to lipid vesicles to partially purify a soluble diacylglycerol kinase, then studied the relation between enzyme-vesicle binding and activity in vesicle-based assays. The vesicle-binding procedure required about 2 h, increased the enzyme's specific activity 50-fold with a 50% yield of activity, and combined well with additional purification steps. Studies of the activity of the partially purified diacylglycerol kinase toward vesicle-associated diacylglycerols revealed linear reaction kinetics that reflected enzyme binding to the vesicles; factors known to influence enzyme binding to the vesicles affected enzyme activity only indirectly, not by influencing the diacylglycerol kinase reaction itself. On the other hand, special incubation experiments that caused both substrate depletion in vesicles and enzyme stalling provided evidence that the diacylglycerol kinase could desorb from these vesicles, adsorb to freshly added, substrate-containing vesicles, and resume catalysis of phosphorylation reactions. The molecular basis for this enzyme-vesicle "hopping" behavior remains to be clarified. But enzyme-catalyzed conversion of diacylglycerol to phosphatidic acid may not have been a contributing factor because separate, enzyme-vesicle binding experiments showed that the enzyme had only a marginally higher affinity for diacylglycerol-containing vesicles than it did for vesicles that contained comparable amounts of phosphatidic acid. The combined results of our experiments suggest that the linear rates of diacylglycerol phosphorylation observed in standard assays with diacylglycerol-containing vesicles may have been combined functions of both the rate of enzyme hopping among vesicles and the rate of diacylglycerol phosphorylation by enzyme that was bound transiently on substrate-containing vesicles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号