首页 | 本学科首页   官方微博 | 高级检索  
     


Root responses of Medicago truncatula plants grown in two different iron deficiency conditions: changes in root protein profile and riboflavin biosynthesis
Authors:Rodríguez-Celma Jorge  Lattanzio Giuseppe  Grusak Michael A  Abadía Anunciación  Abadía Javier  López-Millán Ana-Flor
Affiliation:Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain.
Abstract:Iron deficiency is a yield-limiting factor with major implications for field crop production in one-third of the world's agricultural areas, especially those with high soil CaCO(3). In the present work, a two-dimensional gel electrophoresis proteomic approach was combined with a study on the riboflavin synthesis pathway, including qPCR and riboflavin determination, to investigate Fe-deficiency responses in Medicago truncatula plants grown with and without CaCO(3). Iron deficiency caused a de novo accumulation of DMRLs and GTPcII, proteins involved in riboflavin biosynthesis, as well as marked increases in root riboflavin concentrations and in the expression of four genes from the riboflavin biosynthetic pathway. Two novel changes found were the increased accumulation of proteins related to N recycling and protein catabolism. Other identified changes were consistent with previously found increases in glycolysis, TCA cycle, and stress-related processes. All effects were more marked in the presence of CaCO(3). Our results show that the riboflavin biosynthesis pathway was up-regulated at the genomic, proteomic, and metabolomic levels under both Fe-deficiency treatments, especially in the presence of CaCO(3). Results also indicate that N recycling occurs in M. truncatula upon Fe deficiency, possibly constituting an additional anaplerotic N and C source for the synthesis of secondary metabolites, carboxylates, and others.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号