首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic control of hormone-induced ovulation rate in mice.
Authors:J L Spearow  M Barkley
Affiliation:Section of Neurobiology, Physiology and Behavior, University of California at Davis, Davis, California 95616, USA. jlspearow@ucdavis.edu
Abstract:The nature of genetic differences in ovarian responsiveness to gonadotropins was examined in mouse strains and subspecies. Hormone-induced ovulation rate (HIOR) differed 5-fold between Mus musculus strains A/J (10.3 +/- 1.6 eggs in cumulus) and C57BL/6J (B6) (47.3 +/- 2.5 eggs in cumulus), and 6-fold among Mus spretus lines and crosses. Subspecies differed up to 10-fold in HIOR (Mus spretus/Ros: 4.8 +/- 1.0 eggs in cumulus versus B6). An additional experiment examined the genetics of HIOR in crosses. The number of eggs ovulated in response to equine chorionic gonadotropin (CG)/human CG averaged 8.4 +/- 0.9 in A/J, 40.7 +/- 1.7 in B6, 33.9 +/- 1.6 in B6AF1, and 20.2 +/- 0.3 in (B6xA)xA backcrosses. The 5-fold genetic differences in hormone-induced ovulation rate between Mus musculus strains A/J and B6 segregated in backcrosses as though they were controlled by the action of approximately 3 loci with major effects. This study demonstrates genetic variation in HIOR both within and between mouse subspecies, and provides confirmation that genetic differences are a major source of variation in the regulation of ovarian responsiveness to gonadotropins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号