Abstract: | Previous studies have suggested that the phosphorylation and dephosphorylation of histone H5 play an important role in controlling the condensation of avian erythrocyte chromatin. The present work locates in the polypeptide chain the major sites at which H5 is phosphorylated in vivo. The majority of the radioactivity in 32P-labeled H5 is clustered in two regions of the molecule. Nearly 50% of the 32P is found in the amino-terminal N-bromosuccinimide (NBS) peptide (residues 1-28); the remainder is confined to three phosphopeptides arising from the C-terminal half of the molecule (residues 100-200). All phosphopeptides are found in a tryptic digest of monophosphorylated H5, indicating the phosphorylation of a given site is a random event. Automatic Edman degradation of the amino-terminal fragment shows that the radioactivity is equally divided between serines at positions 3 and 7. The C-terminal phosphorylated tryptic peptides share some features with the C-terminal phosphorylation sites in H1. If, as has been postulated, the sites of phosphorylation are in or near DNA combining regions, then H5 may have two DNA combining sites. The location of the phosphorylation sites is discussed in relation to a possible mechanism for controlling chromatin condensation. |