首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tri-partite assay for studying exon ligation by the ai5gamma group II intron
Authors:Bar-Shalom A  Moore M J
Institution:Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
Abstract:Group II introns self-splice via a two-step mechanism: cleavage at the 5' splice site followed by exon ligation at the 3' splice site. The second step has been difficult to study in vitro because it is generally faster than the first. Herein we describe development and partial kinetic characterization of a novel assay for studying the second step in isolation. In this system, a truncated linear intron (nucleotides 1-881) mediates exon ligation between two oligonucleotide substrates: a 19 nt 5' exon and a 3' substrate consisting of the last 6 nucleotides of the intron plus a 6 nucleotide 3' exon. We found that neither the exact structure of domain 6 nor the identity of nucleotides flanking the 3' splice site is critical for accurate 3' splice site choice by the ai5gamma group II intron. The multiple turnover k(cat) (0.14 min(-)(1)) is slower than the single turnover k(obs) (0.6-0.7 min(-)(1)), consistent with rate-limiting product release under steady-state conditions. Decreased single turnover rates at lower pHs were more consistent with loss of catalytic activity than with rate-limiting chemistry. Binding of the 3' substrate (K(m) = 2.6 microM) could be improved by changing a long-range A:U base pair involving the last intronic nucleotide (the gamma-gamma' interaction) to G:C (K(m(3)(')(substrate)) = 1 microM).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号