首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase
Authors:Lazarus Brooke D  Roos Mark D  Hanover John A
Institution:Laboratory of Cell Biology and Biochemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of O-linked GlcNAc to serine/threonine residues of a variety of target proteins, many of which have been implicated in such diseases as diabetes and neurodegeneration. The addition of O-GlcNAc to proteins occurs in response to fluctuations in cellular concentrations of UDP-GlcNAc, which result from nutrients entering the hexosamine biosynthetic pathway. However, the molecular mechanisms involved in sugar nucleotide recognition and transfer to protein are poorly understood. We employed site-directed mutagenesis to target potentially important amino acid residues within the two conserved catalytic domains of OGT (CD I and CD II), followed by an in vitro glycosylation assay to evaluate N-acetylglucosaminyltransferase activity after bacterial expression. Although many of the amino acid substitutions caused inactivation of the enzyme, we identified three amino acid residues (two in CD I and one in CD II) that produced viable enzymes when mutated. Structure-based homology modeling revealed that these permissive mutants may be either in or near the sugar nucleotide-binding site. Our findings suggest a model in which the two conserved regions of the catalytic domain, CD I and CD II, contribute to the formation of a UDP-GlcNAc-binding pocket that catalyzes the transfer of O-GlcNAc to substrate proteins. Identification of viable OGT mutants may facilitate examination of its role in nutrient sensing and signal transduction cascades.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号