首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth cones isolated from identified Aplysia neurons in vitro: biochemical and morphological characterization
Authors:M S Flaster  R T Ambron  S Schacher
Abstract:The right upper quadrant (RUQ) cells (R3-R13) of Aplysia regenerating in dissociated cell culture form unusually large growth cones. The movement of these growth cones was observed by time-lapse phase microscopy and their ultrastructure was examined by transmission electron microscopy. Their behavior and ultrastructure have features that are typical of growth cones in vitro. Additionally, they contain neurosecretory granules similar to those found in these cells in vivo. Because RUQ growth cones are large, they can be isolated by manual dissection. RUQ cells were grown in the presence of 35S]methionine and the labeled proteins transported to the growth cones were analyzed by SDS-PAGE. These proteins were compared to those in RUQ cell bodies, RUQ neurites, and to those in the neurites and cell bodies of other identified neurons grown in vitro. Most proteins synthesized by RUQ cells in vitro are transported to their growth cones, including several glycoproteins and the precursor to the R3-R14 neuropeptide. Neuropeptides are also synthesized by a number of other Aplysia neurons growing in vitro. We examined R2, LPL1, R15, and left upper quadrant neurons and found that their precursor peptides, like those of R3-R14, are readily recognized as major cell-specific radiolabeled bands on SDS gels. The presence in regenerating growth cones of neuropeptides, neurosecretory granules, and glycoproteins known to be rapidly transported toward synapses in vivo supports the emerging view that the growth cone in vitro contains not only a motility apparatus but also a macromolecular assembly capable of forming an active synapse immediately upon or shortly after contacting targets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号