Abstract: | Intracellular recordings were made from hair cells in the isolated cochlea of the turtle to characterize the inhibition achieved by the cochlea's efferent innervation. A short train of shocks delivered to the efferent axons produced in the hair cells slow hyperpolarizing synaptic potentials which could be reversed by shifting the membrane potential more negative than about -80 mV. Throughout the efferent hyperpolarization, there was a reduction of up to 25-fold in the amplitude of the receptor potential for tones presented at the hair cell's characteristic frequency. Efferent stimulation also was shown to degrade the cell's tuning properties. It is argued that the combined effects of the hyperpolarization and the loss in hair cell sensitivity could account for a threshold elevation of at least 70 dB in the auditory nerve fibres. |