Control of peripheral glial cell proliferation: a comparison of the division rates of enteric glia and Schwann cells and their response to mitogens |
| |
Authors: | P A Eccleston K R Jessen R Mirsky |
| |
Affiliation: | Department of Anatomy and Developmental Biology, University College London, England. |
| |
Abstract: | The enteric nervous system comprises neurons and a relatively homogeneous population of glial cells, which differ considerably from those found in other parts of the peripheral nervous system and resemble more closely astrocytes from the central nervous system. It provides a simple model system for the study of neuron/glial interactions and glial cell development. In this study the proliferation rates of purified populations of enteric glia and Schwann cells and their response to several mitogens in vitro were compared. Enteric glial cells divided at a much higher rate than Schwann cells in both serum-containing and serum-free media. This difference in their basal proliferation rates was the major difference seen between the two cell types. Both cell populations were stimulated to divide by fibroblast growth factor and glial growth factor but not by epidermal growth factor. Enteric glial cells and Schwann cells proliferated at a greater rate on a basement membrane-like extracellular matrix produced by corneal endothelial cells, laminin, and fibronectin than on poly-L-lysine-coated glass coverslips. The magnitude of stimulation was greater for Schwann cells, presumably due to their lower basal division rates. Like Schwann cells, enteric glial cells were stimulated to divide by two agents which elevate intracellular cAMP, cholera toxin, and dibutyryl cAMP. |
| |
Keywords: | |
|
|