首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site.
Authors:Barry J Bowman  Emma Jean Bowman
Institution:Department of Molecular, University of California, Santa Cruz, California 95064, USA. bowman@biology.ucsc.edu
Abstract:Bafilomycin A1, a potent inhibitor of vacuolar H(+)-ATPases (V-ATPase), inhibited growth of Neurospora crassa in medium adjusted to alkaline pH. Ninety-eight mutant strains were selected for growth on medium (pH 7.2) containing 0.3 or 1.0 microm bafilomycin. Three criteria suggested that 11 mutant strains were altered in the V-ATPase: 1) these strains accumulated high amounts of arginine when grown at pH 5.8 in the presence of bafilomycin, 2) the mutation mapped to the locus of vma-3, which encodes the proteolipid subunit c of the V-ATPase, and 3) V-ATPase activity in purified vacuolar membranes was resistant to bafilomycin. Sequencing of the genomic DNA encoding vma-3 identified the following mutations: T32I (two strains), F136L (two strains), Y143H (two strains), and Y143N (five strains). Characterization of V-ATPase activity in the four kinds of mutant strains showed that the enzyme was resistant to bafilomycin in vitro, with half-maximal inhibition obtained at 80-400 nm compared with 6.3 nm for the wild-type enzyme. Surprisingly, the mutant enzymes showed only weak resistance to concanamycin. Interestingly, the positions of two mutations corresponded to positions of oligomycin-resistant mutations in the c subunit of F(1)F(0)-ATP synthases (F-ATPases), suggesting that bafilomycin and oligomycin utilize a similar binding site and mechanism of inhibition in the related F- and V-ATPases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号