首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xylem conduction and cavitation in Hevea brasiliensis
Authors:Ranasinghe  Muditha S; Milburn  John A
Abstract:Clones of Hevea were studied in an attempt to discover the reasonsfor differences in the hydraulic performance of xylem. Differencesbetween clones were determined, including hydraulic conductivityand conduit width and length distributions. However, it hasproved difficult to reconcile anatomical differences with physiologicalperformance for use in future plant breeding programmes. When leaf relative water content (RWC) had been reduced fromabout 95% to 85%, the hydraulic conductivity of petioles decreasedsharply to about 40% of the initial value. This value correspondedwith xylem sap tensions of 1.8–2.0 MPa. Acoustic detectionexperiments revealed that this reduction in hydraulic conductivitycoincided with the greatest occurrence of cavitation. It seemsinescapable that the reduction in hydraulic conductivity wascaused by embolization; thereafter gas bubbles blocked the flowof water inside many of the conduits. There was some indicationthat eventually such bubbles might be dissolved, because thehydraulic conductivity increased again if specimens were fullyrehydrated. Apparently, the incidence of cavitation coincides with the entryof gas bubbles via ultramicroscopic pores into the conduitsthrough the walls according to the air-seeding hypothesis. Whena petiolate leaf is tested in a pressure chamber it is impossibleto make satisfactory measurements of a balancing pressure beyondc. 1.8–2.0 MPa, because air bubbles, mixed with sap andescaping from the conduits, form a persistent froth. Xylem transportin Hevea seems to be disrupted relatively easily under waterstress which is a feature of other tropical species adaptedto rainforest–type environments Key words: Hevea, xylem, cavitation, conduit, hydraulic conductivity
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号