首页 | 本学科首页   官方微博 | 高级检索  
     


New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer
Authors:Devkumar Mustafi  Bo Peng  Sean Foxley  Marvin W. Makinen  Gregory S. Karczmar  Marta Zamora  John Ejnik  Heather Martin
Affiliation:(1) Department of Biochemistry and Molecular Biology, Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA;(2) Department of Radiology, The University of Chicago, Chicago, IL 60637, USA;(3) Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
Abstract:We have developed a magnetic resonance imaging (MRI) method for improved detection of cancer with a new class of cancer-specific contrast agents, containing vanadyl (VO2+)-chelated organic ligands, specifically bis(acetylacetonato)oxovanadium(IV) [VO(acac)2]. Vanadyl compounds have been found to accumulate within cells, where they interact with intracellular glycolytic enzymes. Aggressive cancers are metabolically active and highly glycolytic; an MRI contrast agent that enters cells with high glycolytic activity could provide high-resolution functional images of tumor boundaries and internal structure, which cannot be achieved by conventional contrast agents. The present work demonstrates properties of VO(acac)2 that may give it excellent specificity for cancer detection. A high dose of VO(acac)2 did not cause any acute or short-term adverse reactions in murine subjects. Calorimetry and spectrofluorometric methods demonstrate that VO(acac)2 is a blood pool agent that binds to serum albumin with a dissociation constant K d ~ 2.5 ± 0.7 × 10−7 M and a binding stoichiometry n = 1.03 ± 0.04. Owing to its prolonged blood half-life and selective leakage from hyperpermeable tumor vasculature, a low dose of VO(acac)2 (0.15 mmol/kg) selectively enhanced in vivo magnetic resonance images of tumors, providing high-resolution images of their interior structure. The kinetics of uptake and washout are consistent with the hypothesis that VO(acac)2 preferentially accumulates in cancer cells. Although VO(acac)2 has a lower relaxivity than gadolinium-based MRI contrast agents, its specificity for highly glycolytic cells may lead to an innovative approach to cancer detection since it has the potential to produce MRI contrast agents that are nontoxic and highly sensitive to cancer metabolism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号