首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of a novel primary mammary tumor cell line reveals that cyclin D1 is regulated by the type I insulin-like growth factor receptor
Authors:Jones Robert A  Campbell Craig I  Petrik James J  Moorehead Roger A
Affiliation:Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G2W1.
Abstract:The importance of type I insulin-like growth factor receptor (IGF-IR) overexpression in mammary tumorigenesis was recently shown in two separate transgenic models. One of these models, the MTB-IGFIR transgenics, was generated in our lab to overexpress IGF-IR in mammary epithelial cells in a doxycycline (Dox)-inducible manner. To complement this transgenic model, primary cells that retained Dox-inducible expression of IGF-IR were isolated from a transgenic mammary tumor. This cell line, RM11A, expressed high levels of IGF-IR, phosphorylated Akt, and phosphorylated extracellular signal-regulated kinase 1/2 in the presence of Dox. IGF-IR overexpression provided the primary tumor cells with a survival advantage in serum-free media and seemed to induce ligand-independent activation of the IGF-IR because RM11A cells cultured in the presence of Dox were largely nonresponsive to exogenous IGFs. IGF-IR overexpression also augmented the growth of RM11A cells in vivo because injection of these cells into mammary glands of wild-type mice produced palpable tumors in 15.8 +/- 3.4 days when the mice were administered Dox, compared with 57.8 +/- 6.3 days in the absence of Dox. DNA microarray analysis revealed a number of genes regulated by IGF-IR, one of which was cyclin D1. Suppression of IGF-IR expression in vitro or in vivo was associated with a decrease in cyclin D1 protein, suggesting that at least some of the proliferative actions of IGF-IR are mediated through cyclin D1. Therefore, this article characterizes the first primary murine mammary tumor cell line with inducible IGF-IR expression. These cells provide a powerful in vitro/in vivo model to examine the function of IGF-IR in mammary tumorigenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号