首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone <Emphasis Type="Italic">Atox1</Emphasis> deletion in <Emphasis Type="Italic">Drosophila</Emphasis>
Authors:Haiqing Hua  Viola Günther  Oleg Georgiev  Walter Schaffner
Institution:1.Institute of Molecular Life Sciences,University of Zürich,Zürich,Switzerland
Abstract:Copper is an integral part of a number of proteins and thus an essential trace metal. However, free copper ions can be highly toxic and every organism has to carefully control its bioavailability. Eukaryotes contain three copper chaperones; Atx1p/Atox1 which delivers copper to ATP7 transporters located in the trans-Golgi network, Cox17 which provides copper to the mitochondrial cytochrome c oxidase, and CCS which is a copper chaperone for superoxide dismutase 1. Here we describe the knockout phenotype of the Drosophila homolog of mammalian Atox1 (ATX1 in yeast). Atox1/− flies develop normally, though at reduced numbers, and the eclosing flies are fertile. However, the mutants are unable to develop on low-copper food. Furthermore, the intestinal copper importer Ctr1B, which is regulated by copper demand, fails to be induced upon copper starvation in Atox1/− larvae. At the same time, intestinal metallothionein is upregulated. This phenotype, which resembles the one of the ATP7 mutant, is best explained by intestinal copper accumulation, combined with insufficient delivery to the rest of the body. In addition, compared to controls, Drosophila Atox1 mutants are relatively insensitive to the anticancer drug cisplatin, a compound which is also imported via Ctr1 copper transporters and was recently found to bind mammalian Atox1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号