首页 | 本学科首页   官方微博 | 高级检索  
     


Fbw7/hCDC4 dimerization regulates its substrate interactions
Authors:Markus Welcker  Bruce E Clurman
Affiliation:1. Department of Orthopaedic Surgery, The Ohio State University, 410W 10th Ave, Columbus, Ohio, 43210, USA
2. Department of Biology, The Citadel, 171 Moultrie Street, Charleston, SC, 29409, USA
3. Department of Stomatology and Department of Immunology, Medical University of South Carolina, 171 Ashley Ave., Charleston, South Carolina, 29425, USA
Abstract:

Background

Membrane complement regulatory proteins (mCRPs) inhibit complement-mediated killing of human cells by human complement, a property that confers protection from complement to malignant breast cancer cells and that thwarts some immunotherapies. Metabolic mechanisms may come into play in protecting cancer cells from the complement system subsequent to relatively low levels of complement deposition.

Results

In differentiating these mechanisms, two types of human breast cancer cell lines, MCF7 (adenocarcinoma) and Bcap37 (medullary carcinoma) were cell-cycle synchronized using glutamine-deprivation followed by restoration. These cells were examined for the expression of two mCRPs (CD59 and CD55), and for subsequent susceptibility to antibody-mediated complement-induced membrane damage. After glutamine restoration, MCF7 and Bcap37 cells were synchronized into the G2/M phase and an average increased expression of CD59 and CD55 occurred with a corresponding resistance to complement-mediated damage. Blocking CD59 inhibitory function with monoclonal antibody revealed that CD59 played a key role in protecting unsynchronized Bcap37 and MCF7 cancer cells from the complement membrane attack complex. Interestingly, glutamine-deprivation did not significantly affect the expression of proteins e.g., the surface level of CD59 or CD55, but did increase the susceptibility to complement-mediated killing. One possible explanation is that glutamine-deprivation may have slowed the turnover rate of mCRPs, preventing the cells from replacing pre-existing mCRPs, as they became neutralized by covalent C4b and C3b depositions.

Conclusion

Taken together the findings are consistent with the conclusion that future immunotherapies should aim to achieve a highly specific and profound activation and deposition of complement as well as to disrupt the synthesis and expression of CD59 and CD55 by the cancer cells.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号