首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells
Authors:Qifei Rong  Jun Huang  Enben Su  Jun Li  Jianyong Li  Lili Zhang  Kejiang Cao
Institution:1. Department of Microbiology and Immunology, Uniformed Services University, 20814, Bethesda, Maryland, USA
2. CSIRO Livestock Industries, Australian Animal Health Laboratory, 3220, Geelong, Victoria, Australia
Abstract:

Background

Nipah virus (NiV) is an emerging paramyxovirus distinguished by its ability to cause fatal disease in both animal and human hosts. Together with Hendra virus (HeV), they comprise the genusHenipavirus in theParamyxoviridae family. NiV and HeV are also restricted to Biosafety Level-4 containment and this has hampered progress towards examining details of their replication and morphogenesis. Here, we have established recombinant expression systems to study NiV particle assembly and budding through the formation of virus-like particles (VLPs).

Results

When expressed by recombinant Modified Vaccinia virus Ankara (rMVA) or plasmid transfection, individual NiV matrix (M), fusion (F) and attachment (G) proteins were all released into culture supernatants in a membrane-associated state as determined by sucrose density gradient flotation and immunoprecipitation. However, co-expression of F and G along with M revealed a shift in their distribution across the gradient, indicating association with M in VLPs. Protein release was also altered depending on the context of viral proteins being expressed, with F, G and nucleocapsid (N) protein reducing M release, and N release dependent on the co-expression of M. Immunoelectron microscopy and density analysis revealed VLPs that were similar to authentic virus. Differences in the budding dynamics of NiV proteins were also noted between rMVA and plasmid based strategies, suggesting that over-expression by poxvirus may not be appropriate for studying the details of recombinant virus particle assembly and release.

Conclusion

Taken together, the results indicate that NiV M, F, and G each possess some ability to bud from expressing cells, and that co-expression of these viral proteins results in a more organized budding process with M playing a central role. These findings will aid our understanding of paramyxovirus particle assembly in general and could help facilitate the development of a novel vaccine approach for henipaviruses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号