首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ecological physiology of Pereskia guamacho, a cactus with leaves
Authors:Edwards Erika J  Diaz Miriam
Institution:Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA. erika.edwards@yale.edu
Abstract:The specialized physiology of leafless, stem-succulent cacti is relatively well understood. This is not true, however, for Pereskia (Cactaceae), the 17 species of leafy trees and shrubs that represent the earliest diverging lineages of the cacti. Here we report on the water relations and photosynthesis of Pereskia guamacho, a small tree of the semiarid scrubland of Venezuela's Caribbean coast. Sapwood-specific xylem conductivity (Ksp) is low when compared to other vessel-bearing trees of tropical dry systems, but leaf-specific xylem conductivity is relatively high due to the high Huber value afforded by P. guamacho's short shoot architecture. P. guamacho xylem is not particularly vulnerable to drought-induced cavitation, especially considering the high leaf water potentials maintained year round. This is confirmed by the lack of significant variation exhibited in Ksp between wet and dry seasons. In the rainy season, P. guamacho exhibited C3-like patterns of stomatal conductance, but during a prolonged drought we documented nocturnal stomatal opening with a concomitant accumulation of titratable acid in leaves. This suggests that P. guamacho can perform drought-induced crassulacean acid metabolism (CAM photosynthesis), although delta 13C values imply that most carbon is assimilated via the C3 pathway. P. guamacho leaves display very low stomatal densities, and maximum stomatal conductance is low whether stomata open during the day or night. We conclude that leaf performance is not limited by stem hydraulic capacity in this species, and that water use is conservative and tightly regulated at the leaf level.
Keywords:Cactaceae  CAM photosynthesis  Huber value  hydraulic conductivity  physiological evolution  xylem vulnerability curve  water relations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号