首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition
Authors:Horton Julie K  Stefanick Donna F  Zeng Jennifer Y  Carrozza Michael J  Wilson Samuel H
Institution:Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Abstract:Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号