首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fic domain-catalyzed adenylylation: insight provided by the structural analysis of the type IV secretion system effector BepA
Authors:Palanivelu Dinesh V  Goepfert Arnaud  Meury Marcel  Guye Patrick  Dehio Christoph  Schirmer Tilman
Institution:1Core program of Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland;2Focal Area of Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
Abstract:Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N‐terminal Fic domain and a C‐terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS‐mediated translocation into host cells. A proteolysis resistant fragment (residues 10–302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α‐32P]‐ATP. Its crystal structure, determined to 2.9‐Å resolution by the SeMet‐SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β‐rich domain at the C‐terminus. On crystal soaking with ATP/Mg2+, additional electron density indicated the presence of a PPi/Mg2+ moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg2+ and target tyrosine. The model is consistent with an in‐line nucleophilic attack of the deprotonated side‐chain hydroxyl group onto the α‐phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence‐independent mechanism of target positioning through antiparallel β‐strand interactions between enzyme and target is suggested.
Keywords:FIC domain  AMPylation  adenylylation  AMP transfer  type IV secretion system
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号