首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rhodium aryloxide complexes containing terdentate nitrogen ligands, C-O bond formation, hydrogen bonding with phenol and oxidative addition reactions. Molecular structure of an Rh(III)-acetyl complex
Authors:Hendrikus F Haarman  Jan-Willem F Kaagman  Wilberth JJ Smeets  Anthony L Spek  Kees Vrieze  
Institution:

aJ.H. van't Hoff Research Instituut, Laboratorium voor Anorganische Chemie, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands

bBijvoet Centre for Biomolecular Research, Vakgroep Kristal- en Structuurchemie, Universiteit Utrecht, Padualaan 8, 3584 CH Utrecht, Netherlands

Abstract:The new rhodium(I) phenoxide complexes Rh(OPh) (2,6-(CH=R2)2C5H3N)] (R2 = i-Pr(3), t-Bu(4)) containing strongly electrondonating N-N′-N ligands, have been prepared by a metathesis reaction of RhCl(2,6-(CH=R2)2C5H3N)] (R2 = i-Pr (1), t-Bu (2)) with NaOPh. These rhodium(I) phenoxide complexes 3 and 4, which are very sensitive to O2 but stable towards H2O, give with phenol the adducts Rh(OPh) (2,6-(CH=NR2)2C5H3N)] · HOPh (R2 = i-Pr (5), t-Bu (6)), which contain strong O-HO hydrogen bonds. The hydrogen bonded phenol could not be extracted with diethyl ether, while no exchange of the hydrogen bonded phenol and the phenoxide ligand in 4 is observed on the NMR time scale. However, a small excess of phenol results in exchange of the hydrogen bonded phenol, the coordinated phenoxide ligand and free phenol on the NMR time scale. Reaction of 3 and 4 with p-nitrophenol afforded Rh(OC6H4-(NO2-4))(2,6-(CH=R2)2C5H3N)] · HOPh (R2 = i-Pr (7), t-Bu (8)) in which the formed phenol is hydrogen bonded to the Rh(I)-OC6H4-(NO2-4) moiety. The O-HO bond is less strong than in 5 and 6, as the hydrogen bonded phenol could be removed by diethyl ether.Treatment of 3 with acetyl chloride and benzoyl chloride in benzene at room temperature gave phenylacetate and RhCl2(C(O)C6H3) (2,6(C(H)=N-i-Pr)2C5H3N)] (15), and phenylbenzoate and RhCl2(C(O)Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (19), respectively. Complex 15 and the analogous complex RhCl2(C(O)CH3) (2,6-(C(H)=N-t-Bu)2C5H3N)] (16) could also be prepared directly from acetyl chloride and 1 or 2, respectively. The single crystal X-ray determination of complex 16, monoclinic, space group P21/c, a = 10.0477(5), b= 11.7268(6), c= 19.2336(9) Å, β = 92.041(4)°, Z = 4, R1 = 0.0281, shows that the acetyl group occupies an axial position, while the N-N′-N ligand is positioned equatorially. In solution this geometry remains unchanged as was shown by variable temperature 1H NMR measurements. When the oxidative addition of acetyl chloride to 3 was carried out at −78°C in toluene the intermediate complex RhCl(OPh) (C(O)Me) (2,6-(C(H)=N-i-Pr)2C5H3N)] (11) could be isolated, which at room temperature reductively eliminates phenylacetate with formation of 1. Oxidative addition of acetyl chlori de to 4 at room temperature gives RhCl(OPh) (C(O)Me) (2,6-(C(H)=Nt-Bu)2C5H3N)] (12) which yields phenylacetate and 2 at 70°C in benzene by inductive elimination. Treatment of 3 with two equivalents of benzyl chloride afforded a mixture of RhCl(OPh) (CH2Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (13) and RhCl2(CH2Ph) (2,6-(C(H)=N-i-Pr)2C5H3N)] (17) and some non-characterizable organic products, while 4 only yielded RhCl(OPh) (CH2Ph) (2,6-(C(H)=N-tBu)2C5H3N)] (14).
Keywords:Rhodium complexes  Acetyl complexes  Aryloxide complexes  Crystal structures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号