首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redistribution of electric charge accompanying photo-synthetic electron transport in Chromatium
Authors:George D Case  William W Parson  
Institution:

Department of Biochemistry, University of Washington, Seattle, Wash. 98195, U.S.A.

Abstract:The isoionic pH of Chromatium chromatophores is 5.2±0.1. At pH 7.7, the net charge on the chromatophore is approx. ?1·104. If a change in this charge accompanies the oxidation of an electron carrier, the midpoint redox potential (Em) of that carrier should be a function of the solution ionic strength (I). of that carrier should be a function of the solution ionic strength (I).

The Em values of P870 and cytochrome c-555 increase strongly with increasing I at low values of I. The Em of cytochrome c-552 also increases with increasing I, though not so strongly. These effects probably cannot be attributed to an influence of I on the activity coefficient of a dissociable ion. We conclude that, when either P870 or cytochrome c-555 loses an electron, no specific ions (including protons) are bound or released in significant amounts, and the absolute value of the charge on the chromatophore decreases.

The Em values of the primary and secondary electron acceptors, X and Y, do not depend on I. Because these Em values have been shown previously to depend on pH, we conclude that the uptake of a proton keeps the charge on the chromatophore constant when either X or Y accepts an electron. This means that the primary and secondary electron transfer reactions in Chromatium result in a net decrease in the charge on the photosynthetic membrane. They do not result in the translocation of protons across the membrane.

The Em of the soluble flavocytochrome c-552 from Chromatium depends only weakly on I, but depends strongly on the pH. The uptake of a proton appears to keep the net charge on this cytochrome constant upon reduction.

Keywords:midpoint redox potential  PMS  To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号