首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plantago lanceolata L. and Rumex acetosella L. differ in their utilisation of soil phosphorus fractions
Authors:Fransson  Ann-Mari  van Aarle  Ingrid M  Olsson  Pål Axel  Tyler  Germund
Institution:(1) Department of Ecology, Soil-Plant Research, Ecology Building, Lund University, SE-223 62 Lund, Sweden;(2) Department of Ecology, Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
Abstract:To establish relationships between soil phosphorus (P) fractions and leaf P, a mycorrhizal species (Plantago lanceolata L.) was compared with a typically non-mycorrhizal species (Rumex acetosella L.) in a glasshouse experiment. The plants were grown in 40 soils from non-fertilised, abandoned pastures or abandoned arable fields and leaf P concentration were found to be related to various soil P fractions after six weeks of growth. The differences in the P fractions in soil can account for a large share of the variation in leaf P concentration in both species, but the two species differed in their utilisation of P fractions. Leaf P concentration of R. acetosella was more related to extractable soil P than that of P. lanceolata. Rumex acetosella showed a higher maximum P concentration. The P fractions accounting for the largest share of the variation in leaf P concentration was the Bray 1 extractable and the weak oxalate (1 mM) extractable P, and for P. lanceolata also the Na2SO4+NaF extractable P fraction. P extracted with these methods accounted for up to 80% of the variation in P concentration in leaves of R. acetosella and 65% of the variation in leaves of P. lanceolata. More P extractable with weak oxalate, Na2SO4+NaF and strong oxalate (50 mM) was released from the soil than was taken up by the plants during the experimental period. The Bray 1 extractable P fraction, however, decreased in both unplanted and planted soils. Phosphatase release was not induced in any of the plants during the experimental period, indicating that they were not mobilising soil organic P. However, some of the methods extracted a large share of the organic P and still explained much of the variation in leaf P concentration. Mycorrhizal colonisation of P. lanceolata was inversely related to the extractable soil P. The consistently fast P uptake of R. acetosella indicates that this species have a high demand for P. The differences in P utilisation between R. acetosella and P. lanceolata could be caused by their different mycorrhizal status.
Keywords:arbuscular mycorrhiza  phosphatase  phosphorus extraction  plant nutrition  unfertilised soil
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号