Oxidative stress on mouse embryo development in vitro. |
| |
Authors: | Y Goto Y Noda K Narimoto Y Umaoka T Mori |
| |
Affiliation: | Department of Gynecology and Obstetrics, Kyoto University Faculty of Medicine, Japan. |
| |
Abstract: | Oxygen radicals are involved in the in vitro block phenomenon of embryo development, because a low oxygen tension and superoxide dismutase (SOD) have been shown to promote the in vitro development of mouse embryos. One of the target molecules damaged by oxygen radicals may be the thiol (SH) group of proteins because it is readily oxidized. In this study, we evaluated the effects of thioredoxin, which is a powerful protein disulfide reductase, on mouse (Institute of Cancer Research, ICR) preimplantation embryo development. Culture of mouse pronuclear embryos recovered 17 h after human chorionic gonadotrophin (hCG) administration in the presence of thioredoxin (200 micrograms/mL) significantly increased the blastulation rate (75.3%) when compared to the control culture system (8.9%). The effects of thioredoxin were observed only from the pronuclear stage to the two-cell stage (17-48 h after hCG administration). An additive effect of thioredoxin and SOD, or thioredoxin and a low oxygen tension, was observed. These results suggest that the oxidation of the SH group of proteins is one of the causes of developmental blockage of embryos in vitro. The target protein for reduction by thioredoxin has not been identified yet, but thioredoxin will be a new clue for clarifying the mechanism of blocking development in vitro. |
| |
Keywords: | |
|
|