首页 | 本学科首页   官方微博 | 高级检索  
     


Conversion of oxyhemoglobin to methemoglobin by organic and inorganic reductants
Authors:C E Castro  R S Wade  N O Belser
Abstract:Human oxyhemoglobin is converted to methemoglobin by a wide array of organic and inorganic reductants. Depending upon the concentration and nature of the reductant, varying amounts of deoxyhemoglobin are produced. The general overall sequence is: FeO2 leads to (1) FeIII leads to (2) FeII. The intermediacy of methemoglobin can be demonstrated by direct spectral observation and by cyanide trapping. For organic reductants, the second-order rate constants for (1) vary from greater than 300 (phenylhydroxylamine) to 1.4 X 10(-4) M-1 s-1 (malononitrile). Generally the rates parallel the ease of hydrogen abstraction by iron-bound oxygen from the substrate, and simply hydrocarbons are reactive. Rates for these processes have been ascertained with recrystallized protein, lysed cells, and intact human erythrocytes. At room temperature oxyhemoglobin quantitatively converts benzaldehyde to benzoic acid and hydroquinone to benzoquinone. Rates for inorganic species (process 1) range from greater than 7 X 10(3) (chromous ion) to 0.015 M-1 s-1 (ferrocyanide). Ferrous ion rapidly deoxygenates oxyhemoglobin by direct attack on the oxy complex but methemoglobin is not an intermediate with this reagent. Taken together the results support the theoretical prediction that reductants should oxidize oxyhemoglobin, and they demonstrate at least some degree of radical character to the oxy complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号