首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Resolving tylenchid evolutionary relationships through multiple gene analysis derived from EST data
Authors:Scholl Elizabeth H  Bird David McK
Institution:Center for the Biology of Nematode Parasitism, North Carolina State University, Raleigh, NC 27695, USA.
Abstract:Sequence-based phylogenetic analyses typically are based on a small number of character sets and report gene trees which may not reflect the true species tree. We employed an EST mining strategy to suppress such incongruencies, and recovered the most robust phylogeny for five species of plant-parasitic nematode (Meloidogyne arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica), three closely related tylenchid taxa (Heterodera glycines, Globodera pallida, and G. rostochiensis) and a distant taxon, Caenorhabditis elegans. Our multiple-gene approach is based on sampling more than 80,000 publicly available tylenchid EST sequences to identify phylum-wide orthologues. Bayesian inference, minimum evolution, maximum likelihood and protein distance methods were employed for phylogenetic reconstruction and hypothesis tests were constructed to elucidate differential selective pressures across the phylogeny for each gene. Our results place M. incognita and M. javanica as sister taxa, with M. arenaria as the next closely related nematode. Significant differences in selective pressure were revealed for some genes under some hypotheses, though all but one gene are exclusively under purifying selection, indicating conservation across the orthologous groups. This EST-based multi-gene analysis is a first step towards accomplishing genome-wide coverage for tylenchid evolutionary analyses.
Keywords:Bayesian  Caenorhabditis elegans  COG  Cyst nematode  Orthologues  Root-knot nematode
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号