Requirements for maximal enrichment of viable intraerythrocytic Plasmodium falciparum rings by saponin hemolysis |
| |
Authors: | Orjih Augustine U |
| |
Affiliation: | Department of Medical Laboratory Sciences, Kuwait University, 90805 Sulaibikhat, Kuwait, Arabian Gulf. orjih@hsc.edu.kw |
| |
Abstract: | The purpose of the present study was to confirm the effectiveness of saponin hemolysis for concentrating ring-infected erythrocytes in Plasmodium falciparum cultures and to determine the actual numbers of the enriched parasites, not just percentage parasitemia. This is important because various molecular biology and vaccine development against malaria require useable quantities of pure culture with minimal number of uninfected erythrocytes at all stages. Synchronized cultures of three P. falciparum strains were exposed to 0.015% isotonic saponin solution for 30 minutes on ice. They were centrifuged and the pellets were treated again with saponin solution for 3-7 minutes. Initially, most of the cultures contained approximately 10(10) erythrocytes and 1-7% parasitemia, but at the end of the enrichment up to 10(8) of erythrocytes containing 90-99.8% parasitemia were recovered (maximal enrichment). From microscopic examination of the cells it was calculated that the hemolysis rate of uninfected and infected erythrocytes was circa 27 to 1, which could account for the enrichment. Studies by other investigators have suggested that P. falciparum merozoite invasion decreases erythrocyte membrane lipids, and it has been reported that reduction of membrane cholesterol could make erythrocytes saponin-resistant. The possibility that merozoite invasion made erythrocytes partially resistant to saponin hemolysis was strengthened by the observation that the proportions of multiple infections increased significantly in the enriched cultures. However, mature asexual parasites could not be concentrated by this method, suggesting possible differences between the membranes of erythrocytes containing ring forms and those of trophozoites and schizonts. Ring-infected erythrocytes freshly from malaria patients could also not be concentrated by the method described here, suggesting that the ability to induce saponin resistance in erythrocytes was acquired by the parasites in vitro. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|