Combination of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis and modulating epigenetics in human ovarian cancer cells |
| |
Authors: | Burcak Karaca Harika Atmaca Emir Bozkurt Asli Kisim Selim Uzunoglu Bülent Karabulut Canfeza Sezgin Ulus Ali Sanli Ruchan Uslu |
| |
Affiliation: | 1. Division of Medical Oncology, Tulay Aktas Oncology Hospital, School of Medicine, Ege University, 35100, Bornova, Izmir, Turkey 2. Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Muradiye, Manisa, Turkey
|
| |
Abstract: | We investigated the effects of AT-101/cisplatin combination treatment on the expression levels of apoptotic proteins and epigenetic events such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzyme activities in OVCAR-3 and MDAH-2774 ovarian cancer cells. XTT cell viability assay was used to evaluate cytotoxicity. For showing apoptosis, both DNA Fragmentation and caspase 3/7 activity measurements were performed. The expression levels of apoptotic proteins were assessed by human apoptosis antibody array. DNMT and HDAC activities were evaluated by ELISA assay and mRNA levels of DNMT1 and HDAC1 genes were quantified by qRT-PCR. Combination of AT-101/cisplatin resulted in strong synergistic cytotoxicity and apoptosis in human ovarian cancer cells. Combination treatment reduced some pivotal anti-apoptotic proteins such as Bcl-2, HIF-1A, cIAP-1, XIAP in OVCAR-3 cells, whereas p21, Bcl-2, cIAP-1, HSP27, Clusterin and XIAP in MDAH-2774 cells. Among the pro-apoptotic proteins, Bad, Bax, Fas, phospho-p53 (S46), Cleaved caspase-3, SMAC/Diablo, TNFR1 and Cytochrome c were induced in OVCAR-3 cells, whereas, Bax, TRAILR2, FADD, p27, phospho-p53 (S46), Cleaved caspase-3, Cytochrome c, SMAC/Diablo and TNFR1 were induced in MDAH-2774 cells. Combination treatment also inhibited both DNMT and HDAC activities and also mRNA levels in both ovarian cancer cells. AT-101 exhibits great potential in sensitization of human ovarian cancer cells to cisplatin treatment in vitro, suggesting that the combination of AT-101 with cisplatin may hold great promise for development as a novel chemotherapeutic approach to overcome platinum-resistance in human ovarian cancer. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|