首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cellular repressor of E1A stimulated genes enhances endothelial monolayer integrity
Authors:Yan Duan  Shaowei Liu  Jie Tao  Yang You  Guitang Yang  Chenghui Yan  Yaling Han
Institution:1. Department of Cardiology, Shenyang Northern Hospital, Cardiovascular Research Institute, 83 Wenhua Road, Shenyang, 110016, China
Abstract:Cellular repressor of E1A stimulated genes (CREG) is a novel modulator that maintains the homeostasis of vascular cells. The present study aimed to investigate the effects of CREG on tumor necrosis factor (TNF)-α-mediated inflammatory injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured and CREG overexpressing (VC), knockdown (VS) and mock-transfected (VE) HUVECs were challenged with TNF-α. We demonstrated that TNF-α prompted robust intercellular filamentous actin (F-actin) stress fiber formation as examined by rhodamin-phalloidin staining. Transwell assay and rhodamine B isothiocyanate–dextran staining indicated that TNF-α induced intercellular hyperpermeability of the HUVEC monolayers. These effects were attenuated in VC cells with forced CREG overexpression but significantly potentiated in VS cells with CREG silencing. After TNF-α stimulation, interleukin (IL)-6 and IL-8 secretions in VE cells were markedly increased and inducible nitric oxidase (iNOS) expression substantially elevated, whereas these effects were pronouncedly damped in VC cells. Conversely, in VS cells, the increase in inflammatory markers was substantially potentiated. Immunofluorescence staining demonstrated that nuclear factor κB (NF-κB) slowly and transiently translocated into the nuclei of VC cells upon TNF-α stimulation. However, a more swift and sustained nuclear translocation was observed in VS as compared to VE cells. Corresponding changes in the pattern of its protein expression was also observed. These data suggested that CREG can inhibit NF-κB activation, TNF-α-induced inflammatory responses and the hyperpermeability of endothelial cells, and may therefore represent a potential therapeutic target for pathological vascular injury.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号