首页 | 本学科首页   官方微博 | 高级检索  
     


Bleomycin treatment of A549 human lung cancer cells results in association of MGr1-Ag and caveolin-1 in lipid rafts
Authors:Linge Annett  Meleady Paula  Henry Michael  Clynes Martin  Kasper Michael  Barth Kathrin
Affiliation:Institute of Anatomy, Medical Faculty "Carl Gustav Carus", Dresden University of Technology, Fiedlerstra?e 42, 01307 Dresden, Germany. Annett.Linge@dcu.ie
Abstract:Bleomycin treatment of A549 cells induces senescence rather than apoptosis, a more usual response of cancer cells to cytotoxic drugs. We have previously shown that upregulation of caveolin-1, the main structural component of caveolae, plays a key role in this process. In order to gain a better understanding of the molecular basis of this phenomenon, caveolin-1-enriched microdomains of untreated and bleomycin-treated growth-arrested A549 cells were analysed for differential protein expression using 2-D DIGE followed by LC-MS/MS. One of these differentially expressed proteins was found to be the multidrug resistance-associated protein (MGr1-Ag). We show that MGr1-Ag becomes partly localised in lipid rafts following bleomycin treatment, and that MGr1-Ag and caveolin-1 occur in a common protein complex in vivo using co-immunoprecipitation studies. GST pull-down assays demonstrated an increased interaction between MGr1-Ag and caveolin-1 following bleomycin treatment in vitro. Our results reveal MGr1-Ag as a novel lipid raft protein; its increased association with caveolin-1 in bleomycin-induced cell cycle arrest and subsequent cellular senescence might contribute to the success of chemotherapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号