首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Zinc regulates the ability of Cdc25C to activate MPF/cdk1
Authors:Sun Lu  Chai Yingtao  Hannigan Robyn  Bhogaraju Venkata K  Machaca Khaled
Institution:Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
Abstract:Zn(2+) is an essential micronutrient for the growth and development of multicellular organisms, as Zn(2+) deficiencies lead to growth retardation and congenital malformations (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79-118). At the cellular level Zn(2+) depravation results in proliferation defects in many cell types (Vallee, BL, Falchuk, KH. 1993. Physiol Rev., 73:79-118), however the molecular pathways involved remain poorly defined. Here we show that the transition metal chelator TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl) ethylene diamine) blocks the G2/M transition of the meiotic cell cycle by inhibiting Cdc25C-cdk1 activation. ICP-MS analyses reveal that Cdc25C is a Zn(2+)-binding metalloprotein, and that TPEN effectively strips Zn(2+) away from the enzyme. Interestingly, although apo-Cdc25C (Zn(2+)-deficient) remains fully catalytically active, it is compromised in its ability to dephosphorylate and activate MPF/cdk1. Thus, Zn(2+) is an important regulator of Cdc25C function in vivo. Because of the conserved essential role of the Cdc25C-cdk1 module in the eukaryotic cell cycle, these studies provide fundamental insights into cell cycle regulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号