首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High pressure, thermal, and combined pressure-temperature stabilities of alpha-amylases from Bacillus species
Authors:Weemaes C  de Cordt S  Goossens K  Ludikhuyze L  Hendrickx M  Heremans K  Tobback P
Institution:Department of Food and Microbial Technology, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, Belgium.
Abstract:Three different alpha-amylases from Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis, were mutually compared with respect to thermal stability, pressure stability, and combined pressure-temperature stability. Measurements of residual enzyme activity and residual denaturation enthalpy showed that the alpha-amylase from B. licheniformis has by far the highest thermostability and that the two other alpha-amylases have thermostabilities of the same order of magnitude. FTIR spectroscopy showed that changes in the conformation of the alpha-amylases from B. amyloliquefaciens, B. subtilis, and B. licheniformis due to pressure occurred at about 6.5, 7.5, and 11 kbar, respectively. It seemed that, for the enzymes studied, thermal stability was correlated with pressure stability. As to the resistance under combined heat and high pressure, the alpha-amylase from B. licheniformis was much more stable than the alpha-amylases from B. amyloliquefaciens and B. subtilis, the latter two being about equally stable. It appears that under high pressure and/or temperature, B. licheniformis alpha-amylase is the most resistant among the three enzymes studied. (c) 1996 John Wiley & Sons, Inc.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号