首页 | 本学科首页   官方微博 | 高级检索  
     


UV light-induced DNA damage detection in the unicellular green alga Chlamydomonas reinhardtii
Authors:Alena Hercegová  Andrea Ševčovičová  Eliška Gálová
Affiliation:(1) Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, SK-84215 Bratislava, Slovakia
Abstract:Exposure of cells to ultraviolet radiation (UVR) is one of the best studied and most used model system for the examination of the biological effects of DNA damage, its repair and tolerance. The major product after UVR treatment is cyclobutane pyrimidine dimer (TT, TC, CC). Pyrimidine dimers are repaired by a direct reversal called photoreactivation or by excision of damage in a process of nucleotide excision repair. Several methods have been developed for the detection and quantification of pyrimidine dimers in DNA. The technique of Small and Greimann, in which DNA is incubated with the pyrimidine dimer-specific endonuclease, was used for the analysis of mutant strains with impaired excision repair system of the unicellular green alga Chlamydomonas reinhardtii. Another method is based on the binding of specific monoclonal antibodies to pyrimidine dimers. The aim of our work was to compare these two techniques with the use of mutant strains of C. reinhardtii — uvsX1 and uvsX2 which are assumed to be deficient in DNA damage recognition. One of their traits was sensitivity to UVR which could be caused by breakdown of the excision repair pathway. The results suggest that the immuno-approach is suitable for the detection of DNA damage induced by UVR. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.
Keywords:Chlamydomonas reinhardtii   cyclobutane pyrimidine dimers  DNA damage detection  DNA repair  immunoassay
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号