首页 | 本学科首页   官方微博 | 高级检索  
     


Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells
Authors:Etxeberria Ed  González Pedro  Tomlinson Patricia  Pozueta-Romero Javier
Affiliation:University of Florida, Institute of Food and Agricultural Sciences, Horticultural Sciences Department, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA. eje@crec.ifas.ufl.edu
Abstract:The implied existence of two mechanisms for glucose uptake into heterotrophic plant cells was investigated using the fluorescent glucose derivative 2-NBDG (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose), two membrane impermeable fluorescent markers (3000 mol. wt. dextran-Texas Red (d-TR) and Alexa-488), hexose carrier and endocytic inhibitors (phloridzin and wortmannin-A, respectively), and fluorescent and confocal microscopy. Both phloridzin and wortmannin-A significantly reduced the uptake of 2-NBDG into sycamore cultured cells, which was confirmed by fluorescent microscopy. Phloridzin prevented 2-NBDG uptake exclusively into the cytosol, whereas the wortmannin-A effect was more general, with 2-NBDG uptake into the vacuole being the more affected. Simultaneous incubation of cells in the membrane-impermeable fluorescent probes Alexa-488 and d-TR for 24 h resulted in co-localization of the labelling in the central vacuole and other endosomal compartments. Cytoplasts, cells devoid of vacuoles, were instrumental in demonstrating the transport of 2-NBDG by separate uptake mechanisms. In cytoplasts incubated simultaneously in 2-NBDG and d-TR for 2 h, a green fluorescent cytosol was indicative of transport of hexoses across the plasmalemma, while the co-localization of 2-NBDG and d-TR in internal vesicles demonstrated transport via an endocytic system. The absence of vesicles when cytoplasts were pre-incubated in wortmannin-A authenticated the endocytic vesicular nature of the co-shared 2-NBDG and d-TR fluorescent structures. In summary, uptake of 2-NBDG occurs by two separate mechanisms: (i) a plasmalemma-bound carrier-mediated system that facilitates 2-NBDG transport into the cytosol, and (ii) an endocytic system that transports most of 2-NBDG directly into the vacuole.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号