首页 | 本学科首页   官方微博 | 高级检索  
     


Mre11 Nuclease Activity and Ctp1 Regulate Chk1 Activation by Rad3ATR and Tel1ATM Checkpoint Kinases at Double-Strand Breaks
Authors:Oliver Limbo   Mary E. Porter-Goff   Nicholas Rhind   Paul Russell
Affiliation:Department of Molecular Biology,1 Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037,2 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 016053
Abstract:Rad3, the Schizosaccharomyces pombe ortholog of human ATR and Saccharomyces cerevisiae Mec1, activates the checkpoint kinase Chk1 in response to DNA double-strand breaks (DSBs). Rad3ATR/Mec1 associates with replication protein A (RPA), which binds single-stranded DNA overhangs formed by DSB resection. In humans and both yeasts, DSBs are initially detected and processed by the Mre11-Rad50-Nbs1Xrs2 (MRN) nucleolytic protein complex in association with the Tel1ATM checkpoint kinase and the Ctp1CtIP/Sae2 DNA-end processing factor; however, in budding yeast, neither Mre11 nuclease activity or Sae2 are required for Mec1 signaling at irreparable DSBs. Here, we investigate the relationship between DNA end processing and the DSB checkpoint response in fission yeast, and we report that Mre11 nuclease activity and Ctp1 are critical for efficient Rad3-to-Chk1 signaling. Moreover, deleting Ctp1 reveals a Tel1-to-Chk1 signaling pathway that bypasses Rad3. This pathway requires Mre11 nuclease activity, the Rad9-Hus1-Rad1 (9-1-1) checkpoint clamp complex, and Crb2 checkpoint mediator. Ctp1 negatively regulates this pathway by controlling MRN residency at DSBs. A Tel1-to-Chk1 checkpoint pathway acting at unresected DSBs provides a mechanism for coupling Chk1 activation to the initial detection of DSBs and suggests that ATM may activate Chk1 by both direct and indirect mechanisms in mammalian cells.DNA double-strand breaks (DSBs), formed by clastogens or from endogenous damage, trigger multiple cellular responses that are critical for maintaining genome integrity. Of particular importance is the cell cycle checkpoint that restrains the onset of mitosis while DSB repair is under way. Chk1 is the critical effector of this checkpoint in the fission yeast Schizosaccharomyces pombe and mammalian cells, whereas the budding yeast Saccharomyces cerevisiae uses both Chk1 and Rad53 (orthologous to human Chk2 and fission yeast Cds1) to delay anaphase entry and mitotic exit. These kinases are regulated by ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) checkpoint kinases (5). Curiously, the regulatory connections between ATM/ATR and Chk1/Chk2 orthologs are not strictly conserved between species (Fig. (Fig.1A).1A). In mammals, ATM activates Chk2 while ATR activates Chk1. In S. cerevisiae and S. pombe, ATR orthologs (Mec1 and Rad3, respectively) activate Chk2 orthologs and Chk1, while Tel1 (ATM ortholog) is primarily involved in telomere maintenance (14, 38, 40).Open in a separate windowFIG. 1.Deletion of Ctp1 restores the DNA damage checkpoint in rad3Δ cells. (A) Regulatory connections between ATM/ATR and Chk1/Chk2 orthologs in mammals, S. cerevisiae, and S. pombe. ATM phosphorylates Chk2 and ATR phosphorylates Chk1. CtIP mediates an ATM-to-ATR switch through DNA end resection in mammals (44, 53). ATM promotes Chk1 activation by stimulating CtIP-dependent resection through an unknown mechanism. In S. cerevisiae, Mec1 phosphorylates both Rad53 and Chk1. Deleting Sae2 uncovers a Tel1-to-Rad53 signaling pathway and enhances Rad53 activation (47). In S. pombe, Cds1 and Chk1 activation is dependent on Rad3. (B) Chk1 phosphorylation peaks in wild-type (wt) (top panel) and ctp1Δ cells (bottom panel) 30 min after exposure to 90 Gy of IR in log-phase cultures. Chk1 phosphorylation in ctp1Δ cells prior to IR exposure likely arises from an inability to repair spontaneous DNA damage (23). Immunoblots were probed for the HA epitope-tagged Chk1 or Cdc2 as a loading control. (C) Chk1 phosphorylation is reduced at least 2-fold in ctp1Δ cells relative to the wild type. Quantification of blots from panel B expressed as a ratio of phospho-Chk1 (upper band) versus nonphospho-Chk1 (lower band) was performed. The phospho-Chk1 signal in untreated ctp1Δ cells was subtracted from the IR-treated samples to more accurately measure the IR-induced phosphorylation. (D) The ctp1Δ mutation restores Chk1 phosphorylation in rad3Δ cells. Cells were harvested immediately after mock or 90-Gy IR treatment and blotted for HA epitope tag. Ponceau staining shows equal loading. (E) Quantitation of Chk1 phosphorylation. Error bars represent the standard errors from three independent experiments. (F) The checkpoint arrest is restored in ctp1Δ rad3Δ cells. Cells synchronized in G2 by elutriation were mock treated or exposed to 100 Gy of IR. Cell cycle progression was tracked by microscopic observation.The functions of ATM and ATR orthologs are intimately tied to the detection and nucleolytic processing of DSBs. ATMTel1 localizes at DSBs by interacting with Mre11-Rad50-Nbs1Xrs2 (MRN) protein complex, which directly binds DNA ends (12, 20, 24, 50, 52). The MRN complex is essential for ATMTel1 function in all species. The Mre11 subunit of MRN complex has DNase activities that are critical for radioresistance in S. pombe and mice but not in budding yeast (3, 19, 22, 50). In fission yeast, MRN complex also recruits Ctp1 DNA end-processing factor to DSBs (25, 49). Ctp1 is structurally and functionally related to CtIP in mammals and Sae2 in budding yeast, the latter of which has nuclease activity in vitro (21, 23, 43). Ctp1 and CtIP are essential for survival of ionizing radiation and other clastogens (23, 43, 54), whereas sae2Δ mutants are not radiosensitive except at very high doses of ionizing radiation (IR), although both Ctp1 and Sae2 are required for repair of meiotic DSBs formed by a Spo11/Rec12-dependent mechanism (17, 23, 36). Genetic and biochemical studies indicate that Sae2/Ctp1/CtIP collaborate with MRN complex to initiate the 5′-to-3′ resection of DSBs (7, 23, 28, 43, 53, 55), which leads to the generation of 3′ single-strand overhangs (SSOs) that are critical for DSB repair by homologous recombination (HR). Replication protein A (RPA) binding to SSOs is essential for HR repair of DSBs, but it is also important for recruiting ATRRad3/Mec1, which interacts with RPA through its regulatory subunit ATRIP (Rad26 in fission yeast, Ddc2 in budding yeast) (5, 56). Subsequent phosphorylation of Chk1 by ATR also requires the Rad9-Hus1-Rad1 (9-1-1) checkpoint clamp, which is loaded at the single-strand/double-strand DNA junctions (26, 48, 57), the ATR activating protein TopBP1 (Cut5 in fission yeast), and a checkpoint mediator protein such as Crb2 in fission yeast (34, 41, 48).In this mechanism of DNA damage checkpoint signaling, DNA end resection is critical for ATR (Rad3/Mec1) activation, and therefore resection defective mutants should be unable to mount a fully active checkpoint response (44). However, Rad53 activation is not diminished in budding yeast sae2Δ mutants that suffer an irreparable DSB by expressing HO endonuclease. In fact, there is a defect in turning off the checkpoint signal (6). A similar effect is observed in S. cerevisiae strains expressing the mre11-H125N nuclease-defective form of Mre11. Moreover, overexpression of SAE2 strongly inhibits Rad53 activation (6). The reasons for these phenotypes are unknown, since neither Sae2 nor Mre11 nuclease activity are required for DSB resection or radioresistance. However, deleting Sae2 delays resection while at the same time enhancing a cryptic Tel1-to-Rad53 checkpoint pathway (6, 47). These effects correlate with delayed disassembly of Mre11 foci at DSBs in sae2Δ cells, suggesting that Sae2 may negatively regulate checkpoint signaling by modulating Mre11 association at damaged DNA (1, 6, 24). Enhancement of a Tel1-to-Rad53 checkpoint pathway by eliminating Sae2 suggests that the signaling pathways between ATM/ATR and Chk1/Chk2 checkpoint kinases are not hard wired but are adaptable to changes in DNA end processing (47). However, as yet there is no evidence that ATMTel1 can activate Chk1 in any organism.Since SAE2 deletion or overexpression has unexpected effects on Rad53 activation in budding yeast, we decided to explore the relationship between Ctp1 and Chk1 activation in fission yeast. Here, we show that Chk1 activation is substantially diminished in ctp1Δ cells exposed to ionizing radiation. These data are consistent with studies showing that CtIP is required for efficient Chk1 activation in mammalian cells treated with camptothecin (CPT), a topoisomerase I poison that causes replication fork collapse (43, 53). We also investigate the role of Mre11 nuclease activity and find that while ablating Mre11 nuclease activity enhances Rad53 activation in budding yeast, the equivalent Mre11 mutation in fission yeast severely impairs Chk1 activation by ionizing radiation. Furthermore, we find that deleting Ctp1 reveals a previously unknown Tel1-to-Chk1 signaling pathway in S. pombe, a finding analogous to the enhancement of a Tel1-to-Rad53 checkpoint pathway by eliminating Sae2 in S. cerevisiae (47). This Tel1-to-Chk1 pathway also requires Mre11 nuclease activity. These data establish that Tel1ATM can activate Chk1 independently of Rad3ATR, which has implications for studies linking ATM to Chk1 activation in mammalian cells (16, 31). Characterization of this pathway allows us to propose a more detailed model of how Chk1 is activated in response to DSBs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号