首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational Analysis of the Transmembrane Helix 2-HAMP Domain Connection in the Escherichia coli Aspartate Chemoreceptor Tar
Authors:Gus A Wright  Rachel L Crowder  Roger R Draheim  Michael D Manson
Abstract:Transmembrane helix 2 (TM2) of the Tar chemoreceptor undergoes an inward piston-like displacement of 1 to 3 Å upon binding aspartate. This signal is transmitted to the kinase-control module via the HAMP domain. Within Tar, the HAMP domain forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices connected by a flexible linker. In the nuclear magnetic resonance structure of an archaeal HAMP domain, residues corresponding to the MLLT sequence between Arg-214 at the end of TM2 and Pro-219 of Tar are an N-terminal helical extension of AS1. We modified this region to test whether it behaves as a continuous helical connection between TM2 and HAMP. First, one to four Gly residues were inserted between Thr-218 and Pro-219. Second, the MLLT sequence was replaced with one to nine Gly residues. Third, the sequence was shortened or extended with residues compatible with helix formation. Cells expressing receptors in which the MLLT sequence was shortened to MLL or in which the MLLT sequence was replaced by four Gly residues performed good aspartate chemotaxis. Other mutant receptors supported diminished aspartate taxis. Most mutant receptors had biased signal outputs and/or abnormal patterns of adaptive methylation. We interpret these results to indicate that a strong, permanent helical connection between TM2 and the HAMP domain is not necessary for normal transmembrane signaling.The HAMP domain is a structural motif commonly found in histidine kinases (HKs), adenylate cyclases, methyl-accepting chemotaxis proteins (MCPs), and phosphatases (2). In Escherichia coli and Salmonella enterica MCPs, the HAMP domain is located between a transmembrane-sensing module composed of ligand-binding and transmembrane regions and a kinase-control module composed of adaptation and kinase-activating regions (Fig. (Fig.1A)1A) (19). Therefore, HAMP domains are responsible for bidirectional signal transduction between these modules.Open in a separate windowFIG. 1.Domain architecture of the aspartate chemoreceptor. (A) The cartoon, based on a figure from Hazelbauer et al. (2008) (19), illustrates the architecture of the aspartate chemoreceptor. Protein structural domains are labeled on the left, and functional modules are labeled on the right. (B) Schematic of TM2 and the control cable region attached to a ribbon diagram of the solution NMR structure of the Af1503 HAMP domain four-helix bundle (22). TM2 is shown in purple within the membrane. The control cable of TarEc consists of 5 amino acyl residues (Gly-Ile-Arg-Arg-Met) that connect TM2 and AS1 of HAMP. AS1 is shown in blue, AS2 is shown in red, and the 14-residue AS1-AS2 connector (CTR) is shown in black. The residue equivalent to Arg-214 in TarEc is also highlighted in blue, the conserved Pro residue (Pro-219 in TarEc) is highlighted in yellow, and residues equivalent to the MLLT sequence between TM2 and Pro-219 in TarEc are highlighted in cyan.The determination of a high-resolution three-dimensional structure of a HAMP domain from an MCP remains elusive. However, a solution nuclear magnetic resonance (NMR) structure of a HAMP domain has been determined for the Af1503 protein of unknown function from the archaeal thermophile Archeoglobus fulgidus (22). The domain forms a parallel four-helix bundle, with two amphipathic helices, AS1 and AS2, being contributed by each subunit (Fig. (Fig.1B).1B). In this structure, the helices pack in an unusual x-da configuration, commonly referred to as knobs-to-knobs packing, in which the large hydrophobic x residues stabilize both intrasubunit and intersubunit interactions.Evidence for the existence of a four-helix HAMP bundle within intact receptors comes from disulfide cross-linking experiments with Salmonella enterica Tar (TarSe) (41) and the E. coli Aer redox receptor (AerEc) (44). In vivo genetic studies (1, 48) are also consistent with the existence of a four-helix bundle in the E. coli Tsr receptor (TsrEc).TarEc functions as the aspartate chemoreceptor in E. coli (39). Each monomer within the homodimeric (15, 29) receptor possess a periplasmic ligand-binding domain composed of four antiparallel α helices that form four-helix bundles (8). The transmembrane regions that flank this periplasmic domain (transmembrane helix 1 TM1] and TM2) are extensions of the periplasmic helices PD1 and PD4 (27, 33, 37, 40). Aspartate binds at either of two rotationally symmetrical sites at the dimer interface. Each binding site contains residues from PD1 of one subunit and PD1′ and PD4′ of the other. Aspartate binding generates a small (∼1- to 3-Å) vertical displacement into the cytoplasm of one contiguous PD4-TM2 helix relative to the other (14).E. coli Tar (TarEc) and other chemoreceptors normally activate the histidine protein kinase CheA (5), which is coupled to the receptors via the adapter protein CheW. CheA autophosphorylates, and the phosphoryl group is subsequently transferred to the response regulator CheY (21). CheY-P interacts with FliM within the flagellar motor to promote clockwise (CW) rotation of the flagella (36, 46). Counterclockwise (CCW) motor rotation allows the flagellar filaments to coalesce into a bundle that propels the cell in a run (38). CW rotation of one or more flagella disrupts the bundle and generates a tumble (43). Therefore, the relative activities of CheA and the CheY-P phosphatase, CheZ, establish the ratio of CheY to CheY-P within the cell and hence the frequency of tumbling (11, 21).The conformational changes induced by aspartate convert TarEc from a stimulator of CheA activity into an inhibitor (6). The resulting drop in CheY-P activity, which is accelerated by CheZ, suppresses tumbling and lengthens the average run. Inhibition of CheA activity is reversed by covalent methylation of the cognate receptor (17). Methylation is facilitated by a transient decrease in the level of the active, phosphorylated form of the CheB methylesterase (26), which is another substrate for phosphotransfer from CheA (21). The well-studied properties of this system, and the possibility of monitoring several different in vivo parameters, make it amenable for examining signal transduction between TM2 and the adjoining HAMP domain.The apical region of AS1 in TarEc is composed of the tetrapeptide Met-Leu-Leu-Thr, which connects residue Arg-214 at the end of TM2 with the conserved Pro-219 residue within AS1 of the HAMP domain (Fig. (Fig.1B).1B). The corresponding sequence is Thr-Ile-Thr-Arg in the Af1503 HAMP domain. In the NMR structure of the isolated Af1503 HAMP, the corresponding four residues (Thr-Ile-Thr-Arg) comprise an unpaired helical extension of the N terminus of AS1 before Pro-283 (9, 22), but it is unclear how these residues may pack in an intact membrane-spanning protein. In the Af1503 HAMP, Pro-283 packs against residues Glu-311 and Ile-312, which form the N terminus of AS2. The residues at the equivalent positions in TarEc are Glu-246 and Met-247 (Fig. (Fig.1B1B).We modified the length and residue composition of the region between Arg-214 and Pro-219 in TarEc in different ways and monitored the ability of the mutant proteins to support chemotactic migration, to generate the clockwise flagellar rotation that reflects CheA activation, and to regulate adaptive methylation. The results support a model in which the structural tension exerted by TM2 on AS1 controls its signaling state, as proposed by Zhou et al. (48). In the context of that model, the results suggest that when the receptor is in the kinase-inhibiting state, the HAMP domain is in a stable four-helix bundle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号