首页 | 本学科首页   官方微博 | 高级检索  
     


Immunity to systemic Salmonella infections
Authors:Mastroeni Pietro
Affiliation:Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, UK. pm274@cam.ac.uk
Abstract:Salmonella infections are a serious public health problem in developing countries and represent a constant concern for the food industry. The severity and the outcome of a systemic Salmonella infection depends on the "virulence" of the bacteria, on the infectious dose as well as on the genetic makeup and immunological status of the host. The control of bacterial growth in the reticuloendothelial system (RES) in the early phases of a Salmonella infection relies on the NADPH oxidase-dependent anti-microbial functions of resident phagocytes and is controlled by the innate resistance gene Nramp1. This early phase is followed by the suppression of Salmonella growth in the RES due to the onset of an adaptive host response. This response relies on the concerted action of a number of cytokines (TNFalpha, IFNgamma, IL12, IL18, and IL15), on the recruitment of inflammatory phagocytes in the tissues and on the activation of the recruited cells. Phagocytes control bacterial growth in this phase of the infection by producing reactive nitrogen intermediates (RNI) generated via the inducible nitric oxide synthase (iNOS). Clearance of the bacteria from the RES at a later stage of the infection requires the CD28-dependent activation of CD4+ TCR-alphabeta T-cells and is controlled by MHC class II genes. Resistance to re-infection with virulent Salmonella micro-organisms requires the presence of Th1 type immunological memory and anti-Salmonella antibodies. Thus, the development of protective immunity to Salmonella infections relies on the cross-talk between the humoral and cellular branches of the immune system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号