首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic
Authors:Jiang Yu Lin  Ichikawa Yoshitaka  Stivers James T
Affiliation:Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
Abstract:We have investigated the inhibition of the DNA repair enzyme uracil DNA glycosylase (UDG) by an 11-mer oligonucleotide (AIA) containing a cationic 1-aza-deoxyribose (I) residue designed to be a stable mimic of the high-energy oxacarbenium ion reaction intermediate [Werner, R. M., and Stivers, J. T. (2000) Biochemistry 39, 14054-14064]. Inhibition kinetics and direct binding studies indicate that AIA binds weakly to the free enzyme (K(D) = 2 microM) but binds 4000-fold more tightly to the enzyme-uracil anion (EU) product complex (K(D) = 500 pM). The importance of the positive charge on the 1-nitrogen in binding is established by the observation that AIA binds >30 000-fold more tightly to the EU complex than the corresponding neutral tetrahydrofuran (F) abasic site product analogue (AFA). The unusual inhibition mechanism for AIA results in a time dependence that resembles slow-onset inhibition even though the apparent on-rate of the inhibitor for the EU(-) binary product complex is moderate (1 microM(-1) x s(-1)). Accordingly, the low K(D) of AIA for the EU complex is largely due its very slow off-rate (5 x 10(-4) x s(-1)). These results support previous kinetic isotope effect measurements that indicate UDG stabilizes a discrete oxacarbenium ion-uracil anion intermediate. This oxacarbenium ion mimic represents the tightest binding inhibitor of UDG yet identified.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号