首页 | 本学科首页   官方微博 | 高级检索  
   检索      


K+- and Na+-gradient-dependent transport of l-phenylalanine by mouse intestinal brush border membrane vesicles
Authors:A Berteloot  AH Khan  K Ramaswamy
Institution:University of South Carolina School of Medicine, Department of Medicine, Division of Gastroenterology, Veterans Administration Hospital, Columbia, SC 29208 U.S.A.
Abstract:In the presence of an Na+- or a K+-gradient (outside > inside), l-phenylalanine uptake exhibited an overshoot phenomenon indicating active transport. The amplitudes of the overshoots were increased by increasing either Na+ or K+ concentrations in the incubation media, indicating that binding alone cannot account for the K+ effect. The K+-induced overshoot is not due to the presence of a membrane potential alone, as a gradient of choline chloride failed to produce it. Li+ could also substitute for Na+ though less potent than Na+ in inducing an overshoot. Uptake of l-leucine also showed Na+- and K+-effects and l-leucine and l-alanine could inhibit the Na+- and K+-overshoots obtained with phenylalanine. These results lead us to postulate the presence of a carrier for neutral amino acids dependent on monovalent cation with higher affinity for Na+ in mouse intestine. The Na+- and K+-driven active transport of l-phenylalanine were shown to be dependent on the presence of a membrane potential, as short-circuiting the membrane with FCCP reduced the amplitude of the overshoots seen with both ions. However, substitution of Cl? by more lipophilic anions (NO3?, SCN?) produced an inhibition of uptake. A preliminary analysis of the interrelations between Na+ and K+ for l-phenylalanine uptake showed complex interactions which can be best explained by mutual competition for a common carrier at both sides of the membrane. These results suggest the presence of a new transport system or a variant of an ASC-type system for l-phenylalanine (and neutral amino acids) in the mouse intestine. However, our studies do not rule out the possible involvement of more than one system for neutral amino acid uptake.
Keywords:Amino acid transport  Ion gradient  (Brush border membrane)  FCCP  Hepes  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号